
1. INTRODUCTION 

In the new A-Level syllabus document (see [1]), students are expected to reason mathemat

ically, rather than to be burdened by complicated and mundane mathematical computations. 

In this note1
, some approaches to develop mathematical reasoning in A-Level mathematics 

students are discussed. 

2. STUDENTS' PERCEPTIONS OF A-LEVEL MATHEMATICS 

My contact with A-Level students, including high-achieving Mathematics students, sug

gests that students in general have the following perception of A-Level Mathematics: 
(a) A-Level Mathematics is ((highly abstract 11 and ((not derivable 11 

Generally, students feel that 0-Level mathematics is more "concrete", and hence more 

easily understood, than A-Level mathematics. 0-Level teachers tend to use various concrete 

approaches, including even hands-on activities, to teach difficult mathematics concepts, but 

not so much of A-Level teachers. 

For example, students have a clear pictorial understanding of 

( 1 + x) 2 
= 1 + 2x + x 2

. 

After mastering the rules of algebraic expansion and without knowledge of the binomial 

theorem, students can derive the higher expansions 

1 + 3x + 3x2 + x 3
. 

1 + 4x + 6x2 + 4x3 + x4
. 

In other words, the binomial theorem can be verified by direct algebraic expansion. 

On the other hand, the binomial series covered in A-Level mathematics is the following: 

( 1 + x) n = 1 + ( ~) x + ( ~) x2 + ( ~) x 3 + · · · , -1 < x < 1, 

where n is not a positive integer. This series does not appear to be derivable, nor even 

to make sense because: (i) it is an infinite series and not a polynomial, unlike its 0-Level 

1 Presented to JC teachers at the Mathematics Teachers Conference 2006 
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counterpart, the binomial theorem, where n takes only positive integral values; (ii) there is 

an interval of convergence, unlike its 0 -Level counterpart, the binomial expansion, where 
positive integral values of n admit all values of x. Some students expressed that they were 

required only to memorize and apply the formula and not to concern themselves with its 

derivation. 

(b) There are many topics in the syllabus which look alike but are taught separately. 

For example, the binomial series as discussed above is usually taught in the Algebra section 

of the curriculum. In the calculus section, students are taught the Power series formula 

x2 x3 
f(x) = f(O) +xf'(O) + 2 J"(O) + 3 /(3)(0) + · · · 

The above formula appears to be similar to the formula for binomial series, though they are 

not identical. To give another example, general curve sketching techniques and the sketching 

of trigonometric functions are taught in different sections of the curriculum, and could also 

be taught by different teachers. 

(c) Some A-Level topics are 11useless rituals" 

Students see certain topics as useless rituals when they perceive that what they learnt in 

0-Levels is sufficient to solve the problems at hand; yet in the A-Levels teachers force them 

to acquire "weird knowledge" in order to deal with examination problems. For example, 

many students have already mastered "pattern-spotting" at 0-Levels and are able to detect 

even rather complicated patterns. Thus the students do not see any purpose in going through 

the tedious steps of mathematical induction- except to score in the examinations. 

(d) Some A-Level topics are 11meaningless" 

In the 0 -levels, students have been reminded repeatedly that square roots of negative 

numbers do not exist. Because of this, the entire chapter dealing with complex numbers 

does not make sense. While the computation involving complex numbers is generally not 

difficult for the average student, it is difficult for students to appreciate why complex numbers 

are useful. 

3. MAKING "ABSTRACT" MATHEMATICS MORE MEANINGFUL 

Upon further thought, it can be seen that many A-Level Mathematics topics can be made 

more meaningful, without involving greater mathematical rigor. An effort can be made 

to help students understand mathematical results and the meaning of topics covered. For 

example, let us consider the topic of binomial series. When n is not a positive integer, we 

have 

Mathematical Medley I Volume 33 No. 2 December 2006 I 35 



Mathematical Reasoning From 0-Levels to A·Level 

We suggest some activities to make the learning of this topic more interesting. (For more de

tails, refer to [3].) These activities may be incorporated in the lectures or tutorial worksheets 
or both. 

a. Without applying the formula for binomial series, and by simply comparing coefficients 

of "polynomials" (which the students have learnt in the 0 -Level mathematics), help the 

pupils to obtain the binomial expansion of (1 +x)-1, (1 +x)-2 and for other negative integral 

values of n . If one is more ambitious, he may even lead pupils to write down the expansion 

for some rational values of n, for example, n = 1/2. The basic tool that students need is 

how to compare coefficients of polynomials, which they have been taught in the 0-Levels. 

b. Guide pupils to observe that when n is not a positive integer, any (finite degree) 
polynomial cannot be the expansion of (1 + x)n. 

c. It is not possible to introduce the concept of an interval of convergence for an infinite 

series at the A-Levels, in particular the interval of convergence for the binomial expansion 

of (1 + x)n. However, by making some observations with students, they can see that the 

expansion cannot be valid for x 2: 1 or x ~ -1. 

d. One may also guide the students to observe that the above expansion is still valid 

when n is a positive integer; as in fact, the above formula is a generalization of the 0 -Level 

binomial formula and not separate from it. In such instances, the infinite series becomes a 

finite polynomial of degree n. It is not difficult for students to make such observations, and 

these would make learning of this topic more meaningful. 

It is heartening to see that some junior colleges are making the teaching of power series 

more meaningful: If f(x) is a function that is infinitely differentiable, with all its derivatives 

defined at 0, then it can be expressed as a power series 

f(x) = ao + a1x + a2x2 + · · · + anxn + · · · . 

By repeated differentiation, ak can be computed as JCk~(o) where J(k) (0) denotes the value of 

the k-th derivative of f evaluated at 0. 

4. PROVIDING LINKS ACROSS DIFFERENT MATHEMATICS TOPICS 

Teachers could provide links across different topics in mathematics when they are visually 

similar. One good example discussed above is the relation between power series and binomial 

series. The power series of an infinitely differentiable function at 0 can be written as 

x2 x3 
f(x) = f(O) + xj'(O) + 2 j"(O) + 3 j(3l(o) + · · · , 

while the formula for the binomial series of ( 1 +x )n is easily stated. In fact, the binomial series 

can be seen as a special case of the power series. The Maths C Special Paper question in June 
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88, Q1(a) is an example of an assessment question that tests this knowledge. Understanding 

mathematical concepts and the links between different topics is more important than mere 
mathematical computation. 

In A-Level calculus, many more integration formulae and techniques are introduced, on 

top of the formulae and techniques that students learn in 0-Levels. It is possible that 

students are overwhelmed by the volume of formulae and techniques that they miss out on 
understanding the essence of calculus. For example, the fact that definite integrals can be 

interpreted as areas or volumes of revolution is important and should be emphasized. Such a 

concept allows us to evaluate many definite integrals without tedious integration techniques. 

For example, the definite integral f0

1 
v1 - x 2dx can be interpreted as the area of a quadrant 

of a unit circle, hence its value is 7f I 4. For 0 < a < 1) the integral faa v1 - x 2dx can also 

be interpreted as area under the graph. By using formulae for the area of triangles and the 

area of a sector, and without using integration techniques, it can be shown that 

V1- x 2dx = - sin- 1 a+ -av1- a2 . 1a 1 1 

0 2 2 

As another example, the integral j 0
1
1rx2dx can be seen as the volume of a cone with unit 

height and base radius, and hence it evaluates to J0
1 
1rx2dx = 1r /3. By dividing by the 

constant 1r, we have J0
1 

x 2dx = 1/3. Teachers should pay more emphasis on the fundamental 
principles rather than overload the students with the voluminous techniques and formulae. 

5. STUDENTS' UNDERSTANDING PATTERN GENERALIZATION AS MATHEMATICAL 

"PROOF" 

a) Pattern gazing and generalization as "proof": The current secondary school curriculum 

does not focus much on mathematical proofs. However, students are familiar with "pattern

spotting" or "generalizing" which they have practiced from their lower secondary days. After 

observing the first few values f(1), f(2), f(3), ... , students are good at formulating a general 

formula for f ( n). 

For an example, consider the well-known Tower of Hanoi problem. The problem consists 

of a number of discs of different sizes and three poles. Initially, all the discs are on one pole, 

with the discs arranged from smallest (top) to biggest (bottom). The objective is to move 

all the discs from the first pole to the second pole, while obeying the rule that a bigger disc 

cannot be on top of a smaller disc. What is the minimum number of moves required to 

accomplish this objective? If the tower has one disc, only one step is needed to move this 

disc from the first pole to the second pole. If the tower has two discs, it takes a minimum of 

three steps to move the entire set of two discs from the first pole to the second. If the tower 
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has three discs, it takes a minimum of seven steps to move the entire set from the first pole 

to the second. The students may continue to try what happens when there are four or five 

discs. Tabulating the data in a table, we have 

No. of discs Minimum no. of steps 

1 1 

2 3 

3 7 

4 15 

5 31 

By observing the data, most students would be able to postulate that for n discs, it takes 

a minimum of 2n - 1 steps to move all the n discs from the first pole to the second, while 

observing the rule that no bigger disc can be on top of a smaller disc. However, students 

should be reminded that this is only a conjecture and not a mathematical proof. If this 

generalizing of the data is seen as a "mathematical proof", then naturally students will view 

the steps of mathematical induction taught at A-Levels as redundant! Teachers must be 

able to demonstrate to students by using examples that sometimes the first few terms of a 

number sequence will suggest a certain pattern which might not be correct. The following 

example illustrates that pattern generalizing may lead to a "wrong formula". One of the 

SMO (Junior) questions of 2004 is as follows: N points are selected on the circumference of 

a circle and every two points are joined. What is the maximum number of regions formed 

inside the circle by all the chords thus formed? 

No. of points N No. of maximum possible regions 

1 1 

2 2 

3 4 

4 8 

5 16 

Based on pattern generalizing, one will erroneously derive that for N points, the maximum 

possible number of regions is 2N-l. However, by drawing the case when N = 6, we can see 

that there is a maximum of 31 possible regions and not 32, and for N = 7, there are only 57 

regions and not 64. In fact, the true maximum number of regions for N points is given by 

N N(N- 1)(N- 2)(N- 3) (N- 2)(N- 1) 
+ 24 + 2 ' 
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which can be obtained by combinatorial argument. One can refer to [2] to read about this 

problem. This example illustrates that pattern generalizing is not a foolproof way of finding 
a formula. 

b) Inductive reasoning as mathematical "proof": Many students at the secondary school 

levels have been shown illustrations, especially of difficult concepts (see for example [4]), 

using computer tools or softwares. However, these are only illustrations and are by no 
means mathematical proofs that require step-by-step logical deduction. 

6. MATHEMATICAL INDUCTION 

Mathematical induction is meaningful to students only if they understand that their gener

alization from patterns and inductive reasoning do not always give correct results. Teachers 

can help students to see that mathematical induction is not a series of meaningless rituals 

but are useful and meaningful steps. 

a) More real problems should be used. While many past year exam questions involve 

students proving some rather artificial formula, mathematical induction can be introduced 

to students by allowing them to investigate problems, making conjecture on the formulae 

(building on their mastery of pattern gazing and generalization), and then using mathemat

ical induction to prove their conjecture. As an illustration of such investigative problems, 

refer to the following past A-level special paper question: 

Given a sequence of numbers {an}, where a1 = a2 = 1, and the subsequent terms an 
are obtained by adding up all the preceding terms. Obtain expressions for a3 , a4 , a5 and a6 . 

Predict a formula for an, where n ~ 1. Prove your conjecture by mathematical induction. 

b) Critical analysis involving induction steps. Many interesting fallacies from proof by 

induction can be discussed with the students. Students can be given the well-known incorrect 

"proofs" that (i) any set of n integers are all equal; and (ii) the number e is rational. The 

students can be asked to critically examine the steps and mistakes in the steps, thereby 

enhancing mathematical thinking in reading mathematical statements. 

c) Use a variety of examples. It is unfortunate that mathematical induction is classified 

under summation of series in the new A-level syllabus. However, in order to demonstrate 

the essential idea of mathematical induction, one should use more varied induction problems 

besides sums of series; for example inequalities, recurrence relations (of which the Tower 

of Hanoi problem above is an instance), sequences and other types of problems should be 

included. It is common that students take the statement 

n+l n 

~ f(k) = ~ f(k) + f(n + 1) 
k=l k=l 
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blindly as a ritual, rather than see it as something meaningfuL 

7. MAKING "MEANINGLESS" MATHEMATICS USEFUL 

As mentioned above, most students may not have difficulty in performing arithmetic oper

ations involving complex numbers. One could bring to focus on the applications of complex 

numbers to other branches of elementary mathematics which the students are already famil
iar with. 

a) Application to real numbers. For any two complex numbers z and w, we have the 

formula lzwl = lzl · lwl, where lxl is the modulus of the complex number x. When this 

formula is applied to integers, it says that the product of two integers which are sums of 

two square integers is again a sum of two square integers. Students can be led to see the 

connection between complex numbers and its relation to such results in number theory. 

b) Application to geometry. As another example, the classical proof of Ptolemy's Theorem 

for cyclic quadrilaterals involves constructing lines and using similar triangles. However, 

complex numbers can offer an alternative proof to the theorem. 

Teachers might amuse their students with such interesting applications of complex numbers 

to different areas of mathematics. 

8. CONCLUSION 

The above are some recommendations, which are by no means exhaustive, of teaching 

A-level mathematics with an emphasis on mathematical reasoning and mathematical sense. 

Such recommendations only involve a change of perspective in the teaching approaches and 

not necessarily the expenditure of more curriculum time. 
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